United States Patent

US009274720B1

(12) 10) Patent No.: US 9,274,720 B1
Ori (45) Date of Patent: Mar. 1, 2016
(54) DISTRIBUTED RAID OVER SHARED 2013/0046949 Al 2/2013 Colgrove et al.
MULTI-QUEUED STORAGE DEVICES 2013/0179649 Al 7/2013 Green et al.
2014/0136808 Al 5/2014 Colgrove et al.
(71) Applicant: E8 Storage Systems Ltd., Ramat Gan 2014/0189032 Al 72014 Sugimoto et al.
(IL) 2014/0195849 Al 7/2014 Parladori et al.
(Continued)
(72) Inventor: Zivan Ori, Tel Aviv (IL)
FOREIGN PATENT DOCUMENTS
(73) Assignee: E8 STORAGE SYSTEMS LTD.,
Ramat Gan (IL) WO 2013024485 A2 2/2013
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Kalia et al., “Using RDMA Efficiently for Key-Value Services”,
Proceedings of the 2014 ACM conference on SIGCOMM, 15 pages,
(21) Appl. No.: 14/794,868 Aug. 17-22, 2014.
) U.S. Appl. No. 14/697,653 Office Action dated Jul. 17, 2015.
(22) Filed: Jul. 9, 2015 (Continued)
Related U.S. Application Data
(60) Il’goxéigiloétnal application No. 62/050,217, filed on Sep. Primary Examiner — Phuoc Nguyen
’ ’ (74) Attorney, Agent, or Firm — D. Kligler IP Services Ltd.
(51) Imt.ClL
GO6F 13/00 (2006.01)
GOGF 3/06 (2006.01) 67 ABSTRACT
(52) ;I0S4ch9/08 (2006.01) A method for data storage includes, in a system that includes
2.] multiple servers and multiple storage devices, holding in a
CPC o GOG6F 3/0653 (2013.01); GOGF 3/067 server a definition of a stripe that includes multiple memory
(2013.01); GOG6F 3/0619 (2013.01); HO4L . .
T 67/1 09'7 (2(’)13 o1) locations on the storage devices, to be used by the servers for
(58) Field of Classification S h ’ storing multiple data elements and at least a redundancy
CII(:C ° aSSIG(c)Zlenl /l?;g GOGF 11/1092: GOGF element calculated over the data elements. One or more of the
"""""" 22’1 2/262: GO6F 1’ 1/1096 data elements in the stripe are modified by the server, by
USPC ’ 711/114 executing in the storage devices an atomic command, which
See apphcatlon ﬁle forcomplete searchhlstory updates the redundancy element to reflect the modified data
elements only if a current redundancy element stored in the
(56) References Cited storage devices reflects the multiple data elements prior to

U.S. PATENT DOCUMENTS

8,510,265 Bl 8/2013 Boone et al.
8,595,385 Bl 11/2013 Shapiro et al.
8,812,450 Bl 8/2014 Kesavan et al.
9,112,890 Bl 8/2015 Ori

modification of the data elements, and storing the modified
data elements in the storage devices only in response to suc-
cessful completion of the atomic command.

22 Claims, 3 Drawing Sheets

'

64

READ-BEFORE-WRITE OF DATA AND
PARITY BLOCKS TO BE MODIFIED

I

68

RE-CALCULATE NEW PARITY BLOCKS BASED ON
OLD PARITY, OLD DATA AND NEW DATA BLOCKS

I

72,

COPY NEW DATA, OLD PARITY AND
NEW PARITY BLOCKS TO STAGING RAM

]

76

WRITE NEW PARITY USING ATS TO STORAGE (ATS
CONDITION IS THAT OLD PARITY IS UNCHANGED)

80 86~
NO

YES

84«1 WRITE DATA BLOCKS TO STORAGE |

US 9,274,720 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0127923 Al
2015/0212752 Al*

5/2015 Miller et al.
7/2015 Nemazie GO6F 3/0619
711/103

OTHER PUBLICATIONS

Friedman, U.S. Appl. No.14/697,653, filed Apr. 28, 2015.
Friedman, U.S. Appl. No. 62/146,984, filed Apr. 14, 2015.

Rodeh, O., “B-trees, Shadowing, and Clones”, ACM Transactions on
Storage, vol. 3, No. 4, article 15, 27 pages, Feb. 2008.

Rodeh, O., “B-trees, Shadowing, and Clones”, 2007 Linux Storage &
Filesystem Workshop, San Jose, USA, 51 pages, Feb. 12-13, 2007.

Rodeh et al., “BTRFS: The Linux B-Tree Filesystem”, ACM Trans-
actions on Storage, vol. 9, No. 3, article 9, 32 pages, Aug. 2013.
Lim et al., “SILT: A memory-efficient, high-performance key-value
store”, Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles, 13 pages, year 2011.

Behringer et al., “Memory Management for Concurrent RDMA: A
Design for a Key-Value Store”, 86 pages, Jun. 3, 2014.

Mitchell et al., “Using One-Sided RDMA Reads to Build a
Fast,CPU-Efficient Key-Value Store”, USENIX Annual Technical
Conference, pp. 103-114, Jun. 26-28, 2013.

Friedman et al., US Provisional Application filed Jun. 11, 2015.
U.S. Appl. No. 14/697,653 Office Action dated Dec. 31, 2015.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 3 US 9,274,720 B1
2 24 24 24
% ¢ %
SERVER S1 SERVER S2 SERVER Sn
STORAGE STORAGE e STORAGE
AGENT AGENT AGENT
e e 5
40 40 40 36
32 ¢
STORAGE
CONTROLLER C1
44 !
) STORAGE
\ CONTROLLER C2
STAGING RAM .
48,_\’ 81 82 ’\"48 Sn 36
RAM | |RAM [o | RAM
28 o FIG. 1
55 ~~ 30 .
C Y Ty
STORAGE || STORAGE | --- | STORAGE f\.28
DEVICE D1) [DEVICE D2 DEVICE Dm
STORAGE DEVICE ENCLOSURE
USER/APPLICATION FIG. 2
USER VOLUME 40
44 ADDRESSES)
USER VOLUME LAYER (LUN) VOLUME MAP
LV %
52 ADDRESSES 60
RAID LAYER RAID TABLE
é V48 BN ¢
48 L PHYSICAL 56
ADDRESSES
28 28 28

U.S. Patent Mar. 1, 2016 Sheet 2 of 3 US 9,274,720 B1

24
72 ¢
‘/)/ SERVER |«
STAGING
44~
RAM 64 _~86

B~ Ay |64

FIG. 3
v
64 READ-BEFORE-WRITE OF DATA AND
PARITY BLOCKS TO BE MODIFIED

y

RE-CALCULATE NEW PARITY BLOCKS BASED ON
OLD PARITY, OLD DATA AND NEW DATA BLOCKS

66

y

COPY NEW DATA, OLD PARITY AND
NEW PARITY BLOCKS TO STAGING RAM

72N

y

WRITE NEW PARITY USING ATS TO STORAGE (ATS
CONDITION IS THAT OLD PARITY IS UNCHANGED)

76N

86~

SUCCESSFUL? >NO

84 WRITE DATA BLOCKS TO STORAGE

FIG. 4

U.S. Patent Mar. 1, 2016 Sheet 3 of 3 US 9,274,720 B1

102 98~]
ts(d1) % _94 ts(d1)
ts(dz) ts(dz)
d | 102 | 4 dn | 102 0 .106
~. 94 ~ 94 ts(dn) ts(dp)
%

90 FIG. 5
ASSIGN NEW TIMESTAMPS TO FIG. 6

DATA BLOCKS 'iO BE MODIFIED | 449

READ-BEFORE-WRITE DATA BLOCKS |
TO BE MODIFIED AND PARITY BLOCK |

146

114 118

PERFORM
FULL PARITY |+
CALCULATION

PARITY TIMESTAMP
ARRAY MATCHES DATA-BLOCK
TIMESTAMPS?

NO

122

RE-CALCULATE PARITY BASED ON OLD
| DATA, NEW DATA AND OLD PARITY 126

v
SET PARITY TIMESTAMP ARRAY TO EQUAL NEW
TIMESTAMPS OF DATA BLOCKS TO BE MODIFIED, AND
EXISTING TIMESTAMPS OF UNMODIFIED DATA BLOCKS
v

COPY ALL I/O COMMANDS TO STAGING RAM 130

v
WRITE NEW PARITY USING ATS TO STORAGE
(WITH OLD PARITY IN ATS CONDITION)

138

A

134

ATS

NO, BUT PARITY TIME-—~SUCCESSFUL? NO, & PARITY TIME-
STAMPS FOR DATA TO BE STAMPS FOR DATA TO BE
MODIFIED ARE VALID YES MODIFIED ARE INVALID

COMMIT REMAINING /O COMMANDS TO STORAGE 142

US 9,274,720 B1

1
DISTRIBUTED RAID OVER SHARED
MULTI-QUEUED STORAGE DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 62/050,217, filed Sep. 15, 2014, whose
disclosure is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to data storage, and
particularly to methods and systems for distributed storage.

BACKGROUND OF THE INVENTION

Various techniques for distributed data storage are known
in the art. For example, PCT International Publication WO
2013/024485, whose disclosure is incorporated herein by
reference, describes a method of managing a distributed stor-
age space, including mapping a plurality of replica sets to a
plurality of storage managing modules installed in a plurality
of computing units. Each of the plurality of storage managing
modules manages access of at least one storage consumer
application to replica data of at least one replica of a replica
set from the plurality of replica sets. The replica data is stored
in at least one drive of a respective computing unit.

SUMMARY OF THE INVENTION

An embodiment that is described herein provides a method
for data storage. The method includes, in a system that
includes multiple servers and multiple storage devices, hold-
ing in a server a definition of a stripe that includes multiple
memory locations on the storage devices, to be used by the
servers for storing multiple data elements and at least a redun-
dancy element calculated over the data elements. One or more
of'the data elements in the stripe are modified by the server, by
executing in the storage devices an atomic command, which
updates the redundancy element to reflect the modified data
elements only if a current redundancy element stored in the
storage devices reflects the multiple data elements prior to
modification of the data elements, and storing the modified
data elements in the storage devices only in response to suc-
cessful completion of the atomic command.

In some embodiments, modifying the data eclements
includes caching the modified data elements, the current
redundancy element and the updated redundancy element in
an interim memory, and committing the modified data ele-
ments and the updated redundancy element from the interim
memory to the storage devices only in response to the suc-
cessful completion of the atomic command. Typically, the
interim memory and the server belong to different failure
domains of the system.

In an embodiment, the stripe is accessible to at least one
additional server, and modifying the data elements is per-
formed by the server without communication with the addi-
tional server. In another embodiment, modifying the data
elements includes reading current data elements and the cur-
rent redundancy element from the storage devices, and updat-
ing the redundancy element based on the current data ele-
ments, the modified data elements and the current redundancy
element. Modifying the data elements may include, in
response to failure of the atomic command, re-reading the
current data elements and the current redundancy element

10

15

20

25

30

35

40

45

50

55

60

65

2

from the storage devices, re-calculating the redundancy ele-
ment and re-attempting to update the redundancy element
using the atomic command.

In some embodiments, storing the data elements and the
redundancy element includes storing respective timestamps
with the data elements, and storing with the redundancy ele-
ment a list of the timestamps of the data elements over which
the redundancy element was calculated. In an embodiment,
the method includes, prior to modifying the data elements,
verifying that the timestamps of the data elements prior to the
modification match the list of timestamps stored with the
current redundancy element in the storage devices.

In some embodiments, storing the modified data elements
includes storing the modified data elements in the storage
devices only in response to successful completion of the
atomic command, when different writers to the stripe are
permitted to write to a same data or redundancy element
concurrently, and, when the different writers to the stripe are
cannot write to the same data or redundancy element concur-
rently, storing the modified data elements in the storage
devices irrespective of the successful completion of the
atomic command.

There is additionally provided, in accordance with an
embodiment of the present invention, a data storage apparatus
including an interface and a processor. The interface is con-
figured to communicate with multiple storage devices. The
processor is configured to hold a definition of a stripe that
includes multiple memory locations on the storage devices to
be used for storing multiple data elements and at least a
redundancy element calculated over the data elements, and to
modify one or more of the data elements in the stripe by:
executing in the storage devices an atomic command, which
updates the redundancy element to reflect the modified data
elements only if a current redundancy element stored in the
storage devices reflects the multiple data elements prior to
modification of the data elements; and storing the modified
data elements in the storage devices only in response to suc-
cessful completion of the atomic command.

There is further provided, in accordance with an embodi-
ment of the present invention, a computing system including
multiple storage devices and multiple servers. At least one of
the servers is configured to hold a definition of a stripe that
includes multiple memory locations on the storage devices to
be used by the servers for storing multiple data elements and
at least a redundancy element calculated over the data ele-
ments, and to modify one or more of the data elements in the
stripe by: executing in the storage devices an atomic com-
mand, which updates the redundancy element to reflect the
modified data elements only if a current redundancy element
stored in the storage devices reflects the multiple data ele-
ments prior to modification of the data elements; and storing
the modified data elements in the storage devices only in
response to successtul completion of the atomic command.

There is also provided, in accordance with an embodiment
of the present invention, a method for data storage. The
method includes, in a system that includes multiple servers
and multiple storage devices, holding in a server a definition
of a stripe that includes multiple memory locations on the
storage devices, to be used by the servers for storing multiple
data elements and at least a redundancy element calculated
over the data elements. One or more of the data elements in
the stripe are modified by the server, by: under a lock on at
least part of the stripe, updating the redundancy element in the
storage devices to reflect the modified data elements only ifa
current redundancy element stored in the storage devices
reflects the multiple data elements prior to modification of the
data elements; and storing the modified data elements in the

US 9,274,720 B1

3

storage devices only in response to successful completion of
the updating of the redundancy element.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
computing system that uses distributed data storage, in accor-
dance with an embodiment of the present invention;

FIG. 2 is a block diagram that schematically illustrates
elements of a storage agent, in accordance with an embodi-
ment of the present invention;

FIGS. 3 and 4 are a diagram and a flow chart that schemati-
cally illustrates a method for distributed RAID storage, in
accordance with an embodiment of the present invention;

FIG. 5 is a diagram that schematically illustrates a RAID
stripe that uses timestamps, in accordance with an embodi-
ment of the present invention; and

FIG. 6 is a flow chart that schematically illustrates a
method for distributed RAID storage using timestamps, in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Embodiments of the present invention that are described
herein provide improved methods and systems for imple-
menting redundant storage, e.g., Redundant Array of Inde-
pendent Disks (RAID), in a highly distributed manner. The
disclosed techniques are typically implemented in a comput-
ing system comprising multiple servers that store data in
multiple storage devices. Computing systems of this sort are
described, for example, in U.S. patent application Ser. Nos.
14/599,510 and 14/697,653, which are assigned to the
assignee of the present patent application and whose disclo-
sures are incorporated herein by reference.

In some embodiments, the servers store the data on the
storage devices in stripes, each stripe comprising multiple
data elements and one or more redundancy elements (e.g.,
parity) computed over the data elements. The description
below refers mainly to stripes that are made up of data and
redundancy blocks, but the disclosed techniques can be used
with other suitable types of data and redundancy elements.
The terms “parity” and “redundancy” are used interchange-
ably herein.

At least some of the data stored on the storage devices is
shared among the servers. In particular, multiple servers may
write to the same stripe concurrently. Whereas concurrent
access to the same block is typically handled at the applica-
tion level, concurrent access to different blocks in the same
stripe is usually not. Unless accounted for, concurrent access
to different blocks in the same stripe may cause irrecoverable
mismatch between the data and redundancy information in
the stripe.

In some embodiments, the servers eliminate the above-
described problem by writing the redundancy blocks using
Atomic Test and Set (ATS) commands supported by the stor-
age devices. A typical ATS command specifies an address for
storage, new datato be written to that address, and a test value.
The storage device tests whether the data currently stored in
the address is equal to the test value, and writes the new data
only if the test is successful. The test and subsequent write are
performed by the storage device atomically, i.e., without
allowing any intervening writes to the address in question.

10

15

20

25

30

35

40

45

50

55

60

65

4

In a typical flow, a server modifies data in a stripe by first
reading the (one or more) data blocks to be modified, and the
existing (one or more) redundancy blocks, from the storage
devices. This step is referred to as “read-before-write.” The
server calculates the new redundancy blocks based on the new
data blocks, the corresponding existing data blocks read from
the storage devices, and the existing redundancy blocks read
from the storage devices.

The server then writes the new data blocks using normal
write commands, and writes the new redundancy blocks
using ATS commands whose test values are the existing (old)
redundancy values. By using ATS commands in this manner,
the server ensures that no other writer (e.g., other server,
process or application) has modified the redundancy blocks
of' the stripe since the read-before-write step.

In some embodiments, the servers further improve the
above process by attaching timestamps to the data and redun-
dancy blocks. In these embodiments, a writing server attaches
a timestamp to each new data block it writes to a stripe. In
addition, each redundancy block comprises a timestamp
array, which comprises a respective timestamp for each data
block over which the redundancy block has been calculated.
The timestamps and timestamp arrays may be attached to the
data and redundancy blocks, for example, as per-LBA meta-
data. This structure enables the servers to verify that the
redundancy blocks and the data blocks are indeed consistent
with one another.

In some embodiments, the system further comprises an
interim memory, also referred to as “staging RAM.”” A writing
server typically writes the data and redundancy blocks to the
staging RAM, and commits them to the storage devices only
after verifying that all data and redundancy blocks have been
written successfully to the interim memory. This mechanism
eliminates “write hole” scenarios in which a writing server
fails during a write transaction. The staging RAM and server
are typically assumed to belong to different failure domains
of'the system. In one example embodiment, the staging RAM
resides in the same enclosure as the storage devices.

Various example storage processes that use the above
mechanisms are described herein. In some embodiments, the
locking functionality provided by the ATS command is
replaced by another suitable lock on at least part of the stripe.
The disclosed techniques enable multiple servers to imple-
ment redundant storage (e.g., RAID) in shared storage, with-
out a need for any centralized entity and without a need for
servers to communicate with one another for coordination.

System Description

FIG. 1 is a block diagram that schematically illustrates a
computing system 20, in accordance with an embodiment of
the present invention. System 20 may comprise, for example,
a data center, a High-Performance Computing (HPC) cluster,
or any other suitable system. System 20 comprises multiple
servers 24 denoted S1 . . . Sn, and multiple storage devices 28
denoted D1 . . . Dm. The servers and storage devices are
interconnected by a communication network 32. The system
further comprises one or more storage controllers 36 that
manage the storage of data in storage devices 28.

In the present example, although not necessarily, storage
devices 28 are comprised in a storage-device enclosure 30,
e.g.,arack, drawer or cabinet. Enclosure 30 further comprises
a staging Random Access Memory (RAM) unit 44 that com-
prises multiple staging RAMs 48. The staging RAM unit is
used as a front-end for temporary caching of /O commands
en-route from servers 24 to storage devices 28. Staging
RAMs 48 are therefore also referred to herein as interim

US 9,274,720 B1

5

memory. The structure and functionality of the staging RAM
are addressed in greater detail below. Enclosure 30 may also
comprise a Central Processing Unit (CPU—not shown).

Storage-related functions in each server 24 are carried out
by a respective storage agent 40. Agents 40 typically com-
prise software modules installed and running on the respec-
tive servers. The functions of agents 40, and their interaction
with storage devices 28 and storage controllers 36, are
described in detail below.

Servers 24 may comprise any suitable computing plat-
forms that run any suitable applications. In the present con-
text, the term “server” includes both physical servers and
virtual servers. For example, a virtual server may be imple-
mented using a Virtual Machine (VM) that is hosted in some
physical computer. Thus, in some embodiments multiple vir-
tual servers may run in a single physical computer. Storage
controllers 36, too, may be physical or virtual. In an example
embodiment, the storage controllers may be implemented as
software modules that run on one or more physical servers 24.

Storage devices 28 may comprise any suitable storage
medium, such as, for example, Solid State Drives (SSD),
Non-Volatile Random Access Memory (NVRAM) devices or
Hard Disk Drives (HDDs). In an example embodiment, stor-
age devices 28 comprise multi-queued SSDs that operate in
accordance with the NVMe specification. Network 32 may
operate in accordance with any suitable communication pro-
tocol, such as Ethernet or Infiniband. In some embodiments,
some of the disclosed techniques can be implemented using
Direct Memory Access (DMA) and/or Remote Direct
Memory Access (RDMA) operations.

Generally, system 20 may comprise any suitable number of
servers, storage devices and storage controllers. In the present
example, the system comprises two storage controllers
denoted C1 and C2, for resilience. One of the storage con-
trollers is defined as primary, while the other controller serves
as hot backup and can replace the primary storage controller
in case of failure.

In the embodiments described herein, the assumption is
that any server 24 is able to communicate with any storage
device 28, but there is no need for the servers to communicate
with one another. Storage controllers 36 are assumed to be
able to communicate with all servers 24 and storage devices
28, as well as with one another.

The configuration of system 20 shown in FIG. 1 is an
example configuration, which is chosen purely for the sake of
conceptual clarity. In alternative embodiments, any other
suitable system configuration can be used. The different sys-
tem elements may be implemented using suitable hardware,
using software, or using a combination of hardware and soft-
ware elements.

Each server 24 typically comprises a suitable network
interface for communicating over network 32, e.g., with the
storage devices and/or storage controllers, and a suitable pro-
cessor that carries out the various server functions. Each
storage controller 36 typically comprises a suitable network
interface for communicating over network 32, e.g., with the
storage devices and/or servers, and a suitable processor that
carries out the various storage controller functions.

In some embodiments, servers 24 and/or storage control-
lers 36 comprise general-purpose processors, which are pro-
grammed in software to carry out the functions described
herein. The software may be downloaded to the processors in
electronic form, over a network, for example, or it may, alter-
natively or additionally, be provided and/or stored on non-
transitory tangible media, such as magnetic, optical, or elec-
tronic memory.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 is a block diagram that schematically illustrates
elements of storage agent 40, in accordance with an embodi-
ment of the present invention. A respective storage agent of
this sort typically runs on each server 24 and performs stor-
age-related functions for user applications 44 running on the
server. As noted above, servers 24 may comprise physical
and/or virtual servers. Thus, a certain physical computer may
run multiple virtual servers 24, each having its own respective
storage agent 40.

In the disclosed embodiments, each storage agent 40 com-
prises a Redundant Array of Independent Disks (RAID) layer
48 and a user-volume layer 52. RAID layer 48 carries out a
redundant storage scheme over storage devices 28, including
handling storage resiliency, detection of storage device fail-
ures, rebuilding of failed storage devices and rebalancing of
data in case of maintenance or other evacuation of a storage
device. RAID layer 48 also typically stripes data across mul-
tiple storage devices 28 for improving storage performance.

In one simple example embodiment, RAID layer 48 imple-
ments a RAID-10 scheme, i.e., replicates and stores two
copies of each data item on two different storage devices 28.
One of the two copies is defined as primary and the other as
secondary. The primary copy is used for readout as long as it
is available. If the primary copy is unavailable, for example
due to storage-device failure, the RAID layer reverts to read
the secondary copy. Alternatively, however, RAID layer 48
may implement any other suitable redundant storage scheme
(RAID-based or otherwise), such as schemes based on era-
sure codes.

RAID layer 48 accesses storage devices 28 using physical
addressing. In other words, RAID layer 48 exchanges with
storage devices 28 read and write commands, as well as
responses and retrieved data, which directly specify physical
addresses (physical storage locations) on the storage devices.
In this embodiment, all logical-to-physical address transla-
tions are performed in agents 40 in the servers, and none in the
storage devices.

The RAID layer maps between physical addresses and
Logical Volumes (LVs) to be used by user-volume layer 52.
Each LV is mapped to two or more physical-address ranges on
two or more different storage devices. The two or more ranges
are used for storing the replicated copies of the LV data as part
of the redundant storage scheme.

The redundant storage scheme (e.g., RAID) is thus hidden
from user-volume layer 52. Layer 52 views the storage
medium as a set of guaranteed-storage [.Vs. User-volume
layer 52 is typically unaware of storage device failure, recov-
ery, maintenance and rebuilding, which are handled transpar-
ently by RAID layer 48. (Nevertheless, some optimizations
may benefit from such awareness by layer 52. For example,
there is no need to rebuild unallocated storage space.)

User-volume layer 52 provides storage resources to appli-
cations 44 by exposing user volumes that are identified by
respective Logical Unit Numbers (LUNs). The terms “user
volume” and “LUN” are used interchangeably herein. In
other words, a user application 44 views the storage system as
a collection of user volumes, and issues storage commands
having user-volume addresses.

Storage agent 40 translates between the different address
spaces using a RAID table 56 and a volume map 60. RAID
table 56 holds the translation between LV addresses and
physical addresses, and volume map 60 holds the translation
between user-volume addresses and L'V addresses.

Typically, any server 24 may attach to any user volume. A
given user volume may have multiple servers attached
thereto. In some embodiments, storage controllers 36 define
and maintain a global volume map that specifies all user

US 9,274,720 B1

7

volumes in system 20. Volume map in each storage agent 40
comprises a locally-cached copy of at least part of the global
volume map. In agent 40 of a given server, volume map 60
holds at least the mapping of the user volumes (LUNs) to
which this server is attached. In an embodiment, volume map
60 supports thin provisioning.

Certain aspects of distributed storage systems of the sort
shown in FIGS. 1 and 2 are also addressed in U.S. patent
application Ser. Nos. 14/599,510 and 14/697,653, cited
above.

Basic Storage 1/0 Path

As noted above, system 20 is designed such that data-path
storage commands are exchanged directly between servers 24
and storage devices 28, and do not involve the CPUs of
storage controllers 36. In the present context, the terms
“directly” and “not via the storage controllers” address the
logical information flow, and not necessarily a geographical
or physical flow. For example, in one embodiment the storage
devices are implemented in a certain storage rack, and the
storage controllers are implemented as software modules that
run on CPUs in the same rack. Since the data-path storage
commands do not trigger or otherwise involve the CPUs, this
configuration also qualifies as a direct exchange of com-
mands not via the storage controllers.

In some embodiments, all storage devices 28 have the same
formatting and the same guarantees for atomicity, e.g., using
512-byte sectors. The various storage functions preserve the
atomicity guarantees of storage devices 28. Thus, the user
volumes exposed to applications 44 typically have the same
formatting as the storage devices, e.g., 512-byte sectors,
aligned to the 512-byte sectors of the storage devices.

The embodiments described herein assume that each stor-
age device 28 provides multiple server-specific queues for
storage commands, and has the freedom to queue, schedule
and reorder execution of storage commands. In some embodi-
ments, agent 40 in each server 24 maintains a respective
queue per storage device, corresponding to the respective
server-specific queues of the storage devices. Agents 40 and
storage devices 28 are permitted to reorder storage commands
in the queues. The queues in a given agent 40 have no visibil-
ity outside the context of the respective server.

In the disclosed embodiments, it is possible that two or
more servers attempt to access a given sector in a storage
device concurrently. In such a case, no guarantee is given as to
which access will be completed first. The servers are expected
to coordinate this competition for resources.

Raid Layer Considerations

Inthe disclosed embodiments, agents 40 in servers 24 carry
out the various redundant storage (e.g., RAID) functions in a
fully distributed manner, without involving the CPUs of stor-
age controllers 36. Since the RAID layer is distributed among
the servers, each server 24 accessing a certain physical stor-
age device 28 holds all the information needed for its RAID
functionality in RAID table 56.

In some embodiments, storage devices 28 are grouped
together in a RAID group. In an example RAID-10 example,
N storage devices are grouped together and expose a capacity
that is 50% of the actual total storage capacity of the storage
devices. In an example embodiment, RAID table 56 in each
agent 40 comprises a constant-length extent table that maps
logical address ranges to physical address ranges.

In an example implementation, the logical address space of
the system is divided into 1 GB ranges. Each 1 GB range of

10

25

40

45

50

65

8

logical addresses has two entries in RAID table 56, pointing
to two 1 GB physical address-space ranges on two different
storage devices 28. The RAID table is typically predefined,
and changes only rarely, e.g., upon removal or addition of
physical storage devices. The RAID table of a given RAID
group is typically written by storage controllers 36 and dis-
tributed to agents 40 in the various servers 24 that access this
RAID group.

Upon serving a write request, RAID layer 48 typically
looks-up the logical address specified in the request, and
translates the logical address to two physical addresses on the
storage devices, by querying RAID table 56. The RAID layer
then issues two write requests in parallel to the two storage
devices.

The RAID-10 functionality described above is depicted
purely by way of example, in order to demonstrate the con-
cept of direct and fully-distributed RAID operation. Alterna-
tively, any other suitable redundant storage scheme can be
used, such as, for example, RAID-1, RAID-5, RAID-6,
RAID-50, RAID-60, 3-parity RAID (N+p+q+r), or any other
suitable scheme. Generally speaking, when a given server 24
issues a write requests, agent 40 of this server translates the
write request into a sequence of write requests (and possibly
read requests), and executes them in the appropriate storage
devices 28.

In the disclosed embodiments, RAID storage is performed
in a group of memory blocks referred to as a RAID stripe, or
simply strip for brevity. A given RAID stripe comprises mul-
tiple data blocks that store data, and one or more redundancy
blocks that store redundancy information. Any suitable type
of'redundancy function can be used for computing the redun-
dancy information, e.g., a bit-wise XOR, a Reed-Solomon
(RS) code, or any other suitable type of redundancy. The
redundancy blocks and redundancy information, regardless
of type, are referred to below as parity blocks and parity
information.

In some RAID schemes, if less than the full stripe is being
modified, a write operation involves reading the old data and
the old parity before writing the new data and parity, and
deriving the new parity from the new data, the old data and the
old parity. In the disclosed embodiments, the server issuing
the write request typically performs this read-before-write
from the storage devices, and then calculates the new parity.
If all the data in a stripe is modified, there is no need to
perform read-before-write since the new parity can be calcu-
lated based on the new data, regardless of the old data and the
old parity.

Write-Hole Problem and Solution

In the disclosed embodiments, a given RAID stripe can be
accessed (read and written) by one or more servers 24. If a
server fails in the middle of a write operation (e.g., after
writing the data and before writing the parity), the parity of
the stripe will be incorrect and uncorrectable. This problem is
referred to as a “write-hole problem.”

In some embodiments, system 20 overcomes this problem
by first accumulating all the write requests (of data and parity)
in staging RAMs 48. Only after all the data and parity that is
to be modified in the stripe is saved in the staging RAMs, the
write requests are committed to storage devices 28. An under-
lying assumption is that the staging RAMs do not belong to
the same failure domain as the servers. Under this assump-
tion, failure of a server does not affect the information already
saved in the staging RAMs.

In the embodiment of FIG. 1, to perform the above mecha-
nism, staging RAM unit 44 comprises a respective staging

US 9,274,720 B1

9
RAM 48 per server 24. Each staging RAM 48 comprises m
queues, such that the i” queue is used for buffering the write
requests destined for the i”” storage device. When the j” server
issues a write transaction, the server writes the appropriate
(data and parity) write requests to the appropriate queues in
the j* staging RAM.

Only after ensuring (e.g., using acknowledgements from
the staging RAM unit) that all write requests are saved cor-
rectly in the staging RAM, the server sends the staging RAM
unit an instruction to commit the write requests to the appro-
priate storage devices 28. If the server fails during the storage
transaction, the transaction can be completed successfully by
the storage devices, independently of the server failure, since
all information is available in the Staging RAM.

The operation of staging RAM unit 44, including accumu-
lating write requests and later committing them to the storage
devices, is typically performed without any involvement of a
CPU in enclosure 30, if one exists. Since the staging RAMs
are used for interim storage of in-flight write requests, the size
of the staging RAMs depends on the expected throughput of
write requests, rather than on the memory size of storage
devices 28. The staging RAM configuration described above
is depicted purely by way of example. In alternative embodi-
ments, any other suitable configuration can be used.

Data and Parity Writing Race Resolution

As noted above, a given RAID stripe can be written by
multiple servers 24. This concurrency presents several chal-
lenges. One problematic scenario occurs when two servers
attempt to write to the same block simultaneously. This sce-
nario is not solved herein, and the assumption is that the
applications or severs coordinate simultaneous access to the
same block using a SCSI reservation or other locking mecha-
nism.

A more problematic scenario, directly related to the dis-
closed distributed RAID architecture, occurs when multiple
servers attempt to write simultaneously to different blocks
that belong to the same RAID stripe. Consider, for example,
two servers that attempt to perform write transactions simul-
taneously in the same RAID stripe.

This scenario involves two generally-uncorrelated races
between the servers, one for writing the data and the other for
writing the parity. If one server wins both races (i.e., writes
both data and parity before the other server), there is no
coherency issue. If, on the other hand, each race is won by a
different server, the final parity will not match the final data of
the stripe.

Consider, for example a RAID stripe [d1, d2, .. ., dn, p1],
wherein d1 . . . dn denote data blocks and p1 denotes a parity
block. Consider a scenario in which a server sl attempts to
update d1 (and also to update p1 to reflect the update of d1),
and a server s2 attempts to update d2 at the same time (and
thus also update p1 to reflect the update of d2). Assume that
server s1 updates d1 before server s2 updates d2, but server s2
updates p1 before server sl. In such a case, when both trans-
actions are complete, p1 will not be the correct parity for the
updated values of d1 and d2.

It may be possible in principle to avoid such scenarios
using various centralized synchronized locking mechanisms.
Such solutions, however, necessarily introduce some central-
ized entity into the heart ofthe data path, and may also involve
communication between the servers. The description below
describes several alternative solutions that are fully distrib-
uted and do not involve any communication or coordination
between the servers.

10

15

20

25

30

35

40

45

50

55

60

65

10

In some embodiments, the disclosed technique uses
“Atomic Testand Set” (ATS) commands supported by storage
devices 28. In T10 SCSI, for example, the ATS command is
referred to as “Compare and write” and standardized as
opcode 0x89. An ATS command typically specifies the block
address to be written to (e.g., in terms of Logical Block
Address—I.BA), the data to be written, and a condition to be
tested. The storage device tests the condition (“test”), and
performs the write (“set”) only if the condition is met. The
testing and setting are performed atomically, i.e., they cannot
be intervened by any other write operation to the address
specified in the command.

In the disclosed embodiment, each server first writes the
parity to a RAID stripe using an ATS command rather than
using a regular write 1/O. The condition (“test” value) of the
ATS command will be the result of the read-before-write of
the parity, which the server performs in order to re-calculate
the parity. When multiple servers attempt to write to the same
stripe concurrently, only one of them will succeed in updating
the parity using ATS. The other servers will fail in performing
the ATS. The successtful server may proceed to write the other
elements in the stripe (e.g., data). The unsuccessful server(s)
will retry the ATS command, after re-executing the read-
before-write and re-calculating a new parity so as to take into
account the recent parity update.

FIGS. 3 and 4 are a diagram and a flow chart that schemati-
cally illustrates a method for distributed RAID storage using
ATS, in accordance with an embodiment of the present inven-
tion. The description that follows refers to the two figures in
parallel—Arrows in FIG. 3 are marked with the same refer-
ence numerals as the corresponding method steps of FIG. 4.
For the sake of clarity, in the present example each stripe
comprises a single parity block. The method can be adapted in
a straightforward manner to RAID schemes that define mul-
tiple parity blocks per stripe.

In the present example, a server 24 attempts to perform a
RAID transaction that updates data in a block d2 of a RAID
stripe 60 using RAID-5. The RAID transaction should also
write a corresponding update to parity block p of this stripe.
The actions below are typically performed by agent 40 in the
server.

The method begins with the server performing read-be-
fore-write of the various elements (data and parity) to be
modified, at a read-before-write step 64. In the present
example, the server reads d2 and p from storage devices 28.

At a parity re-calculation step 68, the server re-calculates
new parity elements based on the old data elements, the old
parity elements, and new data elements. In the present
example, the server calculates the new parity (denoted
new_p) by calculating the bit-wise XOR of the old parity, the
old d2 and the new d2 (denoted old_p, old_d2 and new_d2,
respectively).

At a copying step 72, the server writes all the I/O com-
mands ofthe RAID transaction to staging RAM unit 44. Inthe
present example, the server copies new_d2, old_p and new_p
to the staging RAM.

At a parity updating step 76, the server issues an ATS
command that attempts to update the parity in the storage
device holding p. In the present example, the test condition in
the ATS command instructs the storage device to write the
new parity new_p, if and only if the currently-stored parity
value is equal to the old parity old_p.

If the ATS condition is met, the server may conclude that
the parity thatis currently stored in p (0ld-p) is the same parity
used for re-calculating the new parity (new_p). In other
words, the ATS condition ensures that the parity was not

US 9,274,720 B1

11

modified by another server or process since the parity was
read at read-before-write step 64.

The server checks whether the ATS command was success-
ful, at an ATS checking step 80. If successful, the server
proceeds to commit the remaining I/Os from staging RAM 44
to storage devices 28. In the present example, the server
instructs the staging RAM to commit the write request of d2
to the appropriate storage device.

If, on the other hand, the ATS command has failed (with
status “ERROR_TEST_FAILED”), the server concludes that
the parity was modified by another server or process since
read-before-write step 64 was performed. In such a case, the
method loops back to step 64 above, and the server re-at-
tempts the entire transaction. In the re-attempted read-before-
write, the read value of old_p will be the modified value that
caused the ATS command to fail.

Reader’s Race Resolution Using Timestamps in
LBA-Metadata

In practice, when using the process of FIGS. 3 and 4 above,
the period of time between execution of the ATS command
(step 76) and writing of the remaining blocks (step 84) still
leaves some possibility for inconsistency. During this short
time period, the parity has already been updated in the storage
devices, but the corresponding data is not fully committed
yet. If another server or process were to read-before-write
from the same stripe during this period, the read data and/or
parity may be inconsistent.

In some embodiments, system 20 overcomes this problem
using timestamps or other suitable identifiers that are indica-
tive of the generation order of the data. In an embodiment,
when a server issues a write request for a certain data block,
the server assigns the data block an identifier that is indicative
of the time at which the write request was issued.

The description that follows uses the term “timestamp” for
the sake of clarity. Generally, however, the disclosed tech-
nique can be carried out using any suitable identifier that is (i)
indicative of the generation time or generation order of the
data, and (ii) cannot be co-assigned by different servers. Thus,
in some embodiments the timestamp comprises a unique
identity of the server.

For example, each server may increment an ever-increas-
ing counter value (or a cyclically increasing counter value
with a large period) that is incremented with every additional
data block sent for storage. The server may assign each data
block that is sent for storage a timestamp having the format
[unique ID of the server, current counter value of the server].
This format eliminates the possibility that two servers assign
the same timestamp.

In some embodiments, the server attaches the timestamp to
the data block as per-LBA metadata. For example, some
storage devices support per-L. BA metadata fields that are used
for storing a checksum for the LBA, e.g., a T10 Protection
Information (T-10 PI) checksum. System 20 may use these
per-LBA metadata fields, or a portion thereof, for storing the
timestamps along with the corresponding data blocks. An
underlying assumption is that the per-LBA metadata is writ-
ten atomically with the data of this LBA by the storage device.

In addition, each parity block comprises an array of times-
tamps. The timestamp array is attached by the server sending
the parity block for storage. The timestamp array of a parity
block comprises the timestamps ofthe data blocks over which
the parity block was calculated. The timestamp array may
also be attached to the parity block as per-LBA metadata.
With these data structures in place, any server can verify

10

15

20

25

30

35

40

45

50

55

60

65

12

without ambiguity whether a parity element indeed matches
(i.e., was calculated over) a given set of data elements.

FIG. 5 is a diagram that schematically illustrates a RAID
stripe 90 that uses timestamps, in accordance with an embodi-
ment of the present invention. Stripe 90 comprises n data
blocks 94 denoted d1 . . . dn, and a parity block 98 denoted p.
Datablocks dl . ..dn are assigned respective timestamps 102
denoted ts(d1) . . . ts(dn), respectively. Parity block p is
assigned an array 106 of time stamps. The values of
ts(dl) .. .ts(dn) in array 106 are equal to the respective values
of'the ts(dl) . . . ts(dn) time stamps of the data blocks whose
data was used for calculating the parity block p.

FIG. 6 is a flow chart that schematically illustrates a
method for distributed RAID storage using timestamps, in
accordance with an embodiment ofthe present invention. The
method is typically carried out by agent 40 in a server 24 that
modifies one or more data blocks in a RAID stripe.

For the sake of clarity, in the present example each stripe
comprises a single parity block. The method can be adapted in
a straightforward manner, however, to RAID schemes that
define multiple parity blocks per stripe.

The method begins with the server assigning a new times-
tamp 102 each of the data blocks that are to be modified
(referred to as “new data blocks™), at a timestamp assignment
step 110. This step is typically performed once per RAID
transaction. At a read-before-write step 114, the server reads
the “old data blocks”—The data stored in storage devices 28
in the addresses of the data blocks to be modified, prior to the
modification. The server also reads the parity block. As
explained above, each data block is read together with per-
LBA metadata that comprises a respective timestamp 102,
and the parity block is read together with per-LBA metadata
that comprises a timestamp array 106.

The server compares the timestamps 102 of the read data
blocks (“old data blocks™) to the corresponding timestamps in
timestamp array 106 of the read parity block (“old parity
block™), at a timestamp comparison step 118. In case of
mismatch, the server may retry the comparison, e.g., one or
two additional times. If the mismatch persists, the server
reverts to perform a full stripe parity calculation, at a full
calculation step 146.

For performing full parity calculation, the server first per-
forms a read-before-write of all the data blocks in the stripe,
except for the data blocks that are intended to be modified.
Timestamp mismatch is permitted at this stage, since the
entire parity information is now calculated, and incorrect
timestamps will soon be replaced. The server then calculates
new parity for the parity block based on the old data blocks
(that are not intended to be modified) and the new data blocks
(that are intended to be modified). Note that the old parity,
which may be incorrect, is ignored. The method then pro-
ceeds to step 126 below.

If, on the other hand, timestamp comparison step 118 con-
cludes that timestamps 102 of the data blocks match the
corresponding timestamps in timestamp array 106 of the par-
ity block, the server proceeds to re-calculate the parity block,
ataparity re-calculation step 122. The server re-calculates the
parity block based on the old data blocks, the new data blocks
and the old parity block.

At a timestamp array updating step 126, the server sets
timestamp array 106 of the parity block to equal the new
timestamps 102 for the data blocks to be modified, and to
equal the existing timestamps 102 for the data blocks that are
not modified.

The server now copies all I/O write commands to be
executed to staging RAM unit 44, at a copying step 130. Atan
ATS step 134, the server writes the new parity block to the

US 9,274,720 B1

13

storage devices using an ATS command. The test condition in
the ATS command requires that the old parity is unchanged in
the storage devices.

Atan ATS checking step 138, the server checks whether the
ATS command was successful. If successful, the server com-
mits all remaining /O write commands concurrently to stor-
age devices 28, at a committal step 142, and the method
terminates.

If the ATS command has failed with status “ERROR_T-
EST_FAILED),” i.e., the content of the parity block is differ-
ent from the expected content, the server concludes that some
intervening write has occurred since read-before-write step
114. In this case, the ATS command should be re-attempted.
At least some of the parity information, however, may no
longer be valid.

Thus, in an embodiment, the server reads the existing
(new) parity from storage devices 28. If parity timestamps
102 of all the data blocks to be modified are identical to the
respective timestamps in array 106 of the new parity block
that was just read, the server concludes that the intervening
write did not modify any of the data that the present transac-
tion intends to modify. In this case the method loops back to
step 126 for re-calculating the parity.

Otherwise, i.e., if at least one parity timestamp 102, of a
data block to be modified, differs from the respective times-
tamp in array 106 of the new parity block that was just read,
the server concludes that the intervening write modified some
of the data that the present transaction intends to modify. In
this case the method loops back to step 114 for repeating the
read-before-write operation. Typically, it is not necessary to
read-before-write all the data blocks to be modified, only the
data blocks to be modified for which a timestamp mismatch
was found at step 138.

When performing the above process, the ATS commands
may fail due to more than two concurrent writers (e.g., servers
or processes) that attempt to write to the RAID strip in ques-
tion. The logic and behavior of the servers, however, remains
the same as in the case of two concurrent writers. The other
writers will keep retrying to perform their ATS command.
This process effectively serializes the write requests per
RAID stripe, but in a fully distributed manner.

When carrying out redundant storage in accordance with
the method of FIG. 6, when two writers attempt to modify the
same block, only one of the writers will succeed due to the
ATS mechanism. The other writer will have to wait for the
first writer to complete the data write operation, not only the
parity write operation, because only then the timestamps will
match in the data blocks and parity block.

On the other hand, when two writers attempt to modify two
different blocks in the same stripe, the second writer canissue
its write commands as soon as its ATS command succeeds,
without having to wait for the write operations of the first
writer to complete (since their content does not affect the
write operations of the second writer). Thus, although writes
to a stripe are serialized by use of the ATS mechanism, data
updates are not serialized (as long as the writers write to
different blocks within the stripe, which is usually the case).

Additional Variations and Optimizations
Writer collaboration

In some embodiments, by coordination between writers
(e.g., servers 24 or applications running on the servers), it is
possible to eliminate the need for a server to wait for its ATS
command to complete. Consider an implementation in which
all the applications writing to a particular LUN can guarantee

10

15

20

30

35

40

45

50

55

60

65

14

collaboration, i.e., guarantee that they do not write to the same
block concurrently. Such collaboration may be implemented,
for example, using SCSI reservations or SCSI ATS com-
mands. In such a case, a given server does not have to wait for
its ATS command to complete before issuing the remaining
write /O commands. This success-oriented approach reduces
latency. The flow of this process is typically the same as that
of FIG. 6, with the exception that steps 134 and 142 are
merged.

Application ATS

In some implementations, applications running on servers
24 may issue SCSI ATS commands. Such commands,
referred to herein as “application ATS” are typically used for
implementing central locks for the benefit of the application,
usually on portions of user volumes. In some embodiment,
agents 40 of system 20 support application ATS commands,
and execute them in a similar manner to the RAID-related
processes described above, with two exceptions:

A. In the read-before write step (e.g., step 64 of FIG. 4 or
step 114 of FIG. 6), verify whether the existing content
of the data block is equal to the “Test” value of the
application ATS. If a mismatch is found, fail the appli-
cation ATS request and return “ERROR_ATS_TEST.”

B. The fully collaborative writer optimization does not
apply to application ATS. Thus, steps 76 and 84 of FIG.
4 (or steps 134 and 142 of FIG. 6) should be kept sepa-
rate and not merged. In an embodiment, agent 40 sends
to the storage device, because the ATS issued for updat-
ing the redundancy of the stripe ensures application-
ATS serialization. In one rare scenario, all redundancy
elements of the stripe are missing (e.g., because the
storage devices on which they are stored have all failed).
In this scenario, the write of the data itself should be
performed using ATS.

Full-Stripe Write Optimization

In the case of full-stripe write (in which all data blocks and
redundancy blocks are updated), there is no need to read-
before-write the existing data blocks since the new redun-
dancy is calculated entirely based on the new data. For fully-
collaborative writers, there is no need to perform ATS in a
full-stripe write since the entire stripe is being overwritten.
The flow in this case is simpler:

A. Assign new timestamps 102 to all data blocks.

B. Calculate new redundancy blocks based only on the new
data elements, regardless of the old data and the old
redundancy.

C. Set timestamp arrays 106 in the redundancy blocks to
equal the new timestamps 102 assigned at step A.

D. Copy all I/O commands to the staging RAM.

E. Issue all I/O commands (data and redundancy) concur-
rently to the storage devices (all using regular write
commands, no need for ATS).

Write Hole (Server Failure) Problem

If a server fails in the middle of a RAID transaction, some
of the /O commands may have been completed, and others
may have not. For example, in one scenario the ATS com-
mand has completed successfully, but the data write com-
mands have not. Various other failure scenarios are possible.
In such cases, the information in the strip is irrecoverable
since the redundancy information is inconsistent with the
data.

US 9,274,720 B1

15

As explained above, in some embodiments these scenarios
are mitigated using staging RAMs 48, which hold the various
1/O requests being performed, and should allow a storage
controller or another server the ability to retry these /O
requests.

Inan embodiment, storage controller 36 regularly monitors
servers 24 for liveliness. Upon detecting a server failure (e.g.,
disappearance or crash), the storage controller may handle
orphan 1/O requests belonging to the failed server, and per-
form the retries that the server was supposed to perform.
Before attempting this action, the storage controller will typi-
cally ping the server for liveliness. If the server is indeed
unresponsive, the storage controller will typically black-list it
as failed (e.g., prevent the server from issuing new [/O
requests).

Staging RAM Concurrent Access

As explained above, in some embodiments each server 24
is assigned a respective staging RAM 48. This assignment is
typically performed upon setup of the server in system 20 by
storage controller 36. Staging RAM 48 for a given server 24
is typically reserved for that server alone, and there is there-
fore no need to lock it as it is not being written to concurrently
by any other server.

In case of server failure, storage controller 36 will typically
perform clean-up of the staging RAM assigned to that server,
and eventually release this staging RAM for other purposes.

Staging RAM Failure

In some cases a writing server may detect that its assigned
staging RAM 48 (or the entire staging-RAM unit 44) has
failed or is otherwise unavailable. In some embodiments, the
server may re-attempt the entire write request (for the entire
RAID transaction) via another path to storage devices 28.
Many storage device configurations enable this sort of solu-
tion. A group of storage devices configured as “Just a Bunch
Of Disks” (JBOD), for example, has two front-end 1/O ele-
ments for redundancy. Thus, it is possible that each of these
front-end elements will have its own RAM and that the two
front-end elements belong to separate failure domains.

Staging RAM and Writing Server Failure

In some cases the writing server may fail concurrently with
its staging RAM 48 (or with the entire staging-RAM unit 44).
In case of such a double failure, the RAID stripe may become
corrupted, e.g., when some of the write I/O commands are
committed by the storage devices and some are not. More-
over, in such a scenario there is usually no record that this [/O
request took place, so there is no hint for a storage controller
or another server to perform stripe recovery.

In such a scenario, the data blocks that the failed server was
trying to write to become inconsistent, which is permissible
according to the SCSI standard. One problematic issue is that
the redundancy blocks do not necessarily reflect the correct
data. System 20 may provide various solutions to this prob-
lem.

In one embodiment, the above problem is avoided using
staging RAM redundancy. For example, the writing server
may write each I/0 request to two separate staging RAMs 48.
Additionally or alternatively, system 20 may run a back-
ground scrubbing process that detects inconsistencies
between timestamps 102 and timestamp arrays 106, and per-
form stripe recovery as needed (including re-calculation of
redundancy blocks).

10

15

20

25

30

40

45

50

16

Scrubbing Process

As noted above, system 20 may run a scrubbing process
that periodically reads data blocks from the storage devices
and verify that the corresponding redundancy blocks are cor-
rect. The verification may consider the data and redundancy
information itself, or it may be based on comparing times-
tamps 102 and timestamp arrays 106. As noted above, such
inconsistency may be indicative of a potential server failure
and/or staging-RAM failure. Upon detecting inconsistency,
the redundancy information should typically be re-calcu-
lated, e.g., by a storage controller or by a functional server.

The rate at which the scrubbing process is performed may
vary depending on implementation. Typically, the scrubbing
process updates the redundancy blocks using AT'S commands
or other form of locking, as explained above.

Degraded Read

When one of the data blocks in a RAID stripe is missing,
e.g., dueto storage device failure, a reading server may recon-
struct the data in the missing data block using the redundancy
block(s) and the remaining data blocks of the stripe. This
reconstruction is sometimes referred to as “degraded read.”

Since, in some embodiments, the redundancy blocks con-
tain a respective timestamp for each data block in the stripe,
the reading server can verify that the redundancy blocks are
correct (i.e., consistent with the data blocks) by checking the
timestamps in timestamp array 106 against timestamps 102 of
the corresponding data blocks.

In case of timestamp mismatch, the missing data block
cannot be reconstructed. This may be a transient effect due to
a race condition with a stripe update, and therefore the read-
ing server should typically re-attempt the entire operation
before declaring failure. If the timestamp mismatch is persis-
tent after several attempts, the reading server may attempt to
lock the LUN in question, or parts thereof, via SCSI reserva-
tion, and re-attempt the degraded read again. If this attempt
also fails, the stripe may be irrecoverable (e.g., the reading
server may receive MEDIUM_ERROR).

In an example embodiment, a degraded read process may
involve the following steps:

A. If all the missing blocks are redundancy blocks, no
further action is needed during degraded read since the
data is intact. Thus, a regular read flow is executed.

B. Read all the available data blocks in the stripe, and the
available redundancy blocks.

C. Verify that the timestamps in array 106 in the redun-
dancy blocks match timestamps 102 of the available data
blocks. In case of a mismatch, re-attempt step B several
times until the timestamps match, to rule out a possible
transient effect due to a concurrent write.

D. If even after several attempts the timestamps do not
match, attempt to lock the LUN or parts thereof and then
re-attempt step B one final time.

E. If the timestamps match, the missing data block can now
be reconstructed. For RAID-5, for example, in case the
storage device containing d1 has failed, the d1 data can
be reconstructed as d1=p-sum(d2 . . . d8).

F. If the timestamps do not match, the missing data block
cannot be reconstructed, and if the re-attempts described
above have not resolved the situation, return a MEDI-
UM_ERROR to the host.

Degraded Write

When a RAID stripe has missing blocks, e.g., due to stor-
age device failure or other storage device unavailability, sys-

US 9,274,720 B1

17

tem 20 can still receive and perform write requests in the strip.
This process is sometimes referred to as “degraded write.”

If the missing block is a data block that is not being modi-
fied, this block can be ignored and a regular write performed.
If, on the other hand, the missing block is a data block that is
being modified, it should first be reconstructed from the
RAID stripe using a degraded read in order to enable calcu-
lating the new redundancy information based on the old
redundancy information. Thus, in an embodiment, the
degraded write process is similar to the write process of FIG.
4, with the exception that some of the read-before-write
operations are in effect degraded read operations.

If the stripe has one or more missing redundancy blocks,
the server may perform the ATS command on the first avail-
able redundancy block. Unavailable redundancy blocks do
not need to be reconstructed. If all redundancy blocks in the
stripe are missing, the server may perform a regular write
instead of an ATS command.

Extension to RAID Schemes Having Multiple
Redundancy Blocks Per Stripe (e.g., RAID-6 and
Beyond)

In some embodiments, system 20 may carry out the dis-
closed techniques with a RAID scheme that defines two or
more redundancy blocks per RAID stripe. Typically, each
redundancy block will contain a timestamp array 106 as
explained above. In an embodiment, when performing a
RAID transaction, only the first redundancy block is written
using an ATS command, whereas the other redundancy
block(s) are written using regular write commands.

When performing a degraded write, the writing server
should perform locking (e.g., using an ATS command) based
on the first available redundancy block (e.g., in RAID-6 hav-
ing redundancy blocks p and q, if a storage device failure
rendered p missing, the ATS command will be performed in
writing q). When degraded write is performed without any
redundancy block, the entire degraded write process may be
performed using regular write commands, without ATS or
other lock. Such a scenario may occur, for example, in
RAID-6 with a double storage device failure that rendered
both p and q missing.

Rebuild Process

After a storage device has failed and was replaced, the
missing data blocks on that storage device can be rebuilt (or
rebuilt even before the actual device is replaced into some
spare capacity of the system). The rebuild process recreates
missing data and/or redundancy blocks in the stripe via
degraded reads for missing data blocks, and redundancy re-
calculations for missing redundancy blocks. The rebuild pro-
cess should write under a suitable lock (e.g., using ATS com-
mands) similarly to the regular write operations described
above.

In case the LUN or parts thereof are locked (e.g. under
SCSlIreservation), or in case of fully collaborative writers, the
rebuild process should write the data blocks (and not only the
redundancy blocks) using ATS, in order not to interfere with
concurrent writes from the user (since the user is not aware
that there is a potential for a write conflict).

Single Writer Optimization
Some of the complexity and latency of the AT'S mechanism

can be avoided if it is explicitly known that there is only a
single writer for the LUN in question. A single-writer sce-

10

15

20

25

30

35

40

45

50

55

60

65

18

nario may occur, for example, if there is only one server
mapped to write to the LUN, or if there is a SCSI reservation
that locks the LUN or parts thereof for exclusive writing. In
case of a single writer, there is no need to perform ATS
commands since there are no concurrent writers. This opti-
mization reduces latency.

Moreover, in a single-writer scenario there is no need to
read-before-write only for the purpose of ATS. For example,
for a full-stripe write there is no need to read the first parity
block (p). This optimization also reduces latency.

If additional writers are later mapped to the LUN, the
single writer should be made aware of this fact and switch
back to ATS-based operation. Before the mapping of the new
writers can be completed, in-flight /O requests should be
allowed to complete. Typically, the rebuild process in this use
case should write both data blocks and redundancy blocks
under suitable locking (e.g., using ATS commands).

Full-Stripe Write Opportunistic Locking
Optimization

When there are many full-stripe writes occurring from a
given server to a given LUN, this scenario may be indicative
of an intensive write pattern (e.g., sequential or large block).
In such a case, locking the LUN (or parts thereof) for exclu-
sive writes may be beneficial as the intensive write will be
completed faster. Such a lock may even be beneficial for the
other (locked-out) concurrent writers.

In some embodiments, server-local monitoring of /O pat-
terns may trigger upon a sufficiently-high quantity of suffi-
ciently-large blocks during a certain period of time. Then, the
server may attempt a SCSI reservation for exclusive writing
to the LUN or parts thereof. This locking request is opportu-
nistic, and if it fails the above-described ATS mechanism can
be employed. The server should take care not to overuse the
SCSIreservations, and the extent of use can be monitored via
SCSI reservation failures that indicate high activity on the
LUN.

Block Ordering in Stripe

Invarious embodiments, the servers may order the data and
parity blocks in a stripe in various suitable orders. Different
block orders enable different trade-offs between increasing
the likelihood of full-stripe write operations and reducing the
number of read operations.

Consider, for example a RAID scheme having n data block
and m parity blocks, stored in a stripe over (n+m) disks. The
size of a full-stripe write is (n)*(number_of_rows)*(disk_
atomic_block_size). In an embodiment, the data blocks are
written to a given stripe in column order, as follows:

D1 D2 Dn P Q
Row=1 #1 #r+1 P ofrow 1 Q of row 1
Row=2 #2 #r+2
Row=r #r #2r #n-r Pofrown Qofrown

Each column in the above table corresponds to a different
physical disk. Each row in the table is a logical grouping of
blocks that have one or more respective parity blocks calcu-
lated upon them (P and Q in the present example). A full-
stripe write requires (r rows)*(n disks) writes. The blocks
within the full stripe are written column-by-column (i.e.,
filling each column before proceeding to next).

US 9,274,720 B1

19

The effect of this organization is that a trade-off can be
struck between writing full stripes vs. performing as few disk
read operations as possible. Consider, for example, the case of
n=8, and disk_atomic_block_size=4 KB. If number_of rows
is 8, a full-stripe write is 256 KB in size, and thus less likely,
but a 32 KB read will incur a single disk 1/O. On the other
hand, if number_of_rows s 1, a full-stripe write is 32 KB (and
thus very likely), but a 32 KB read will incur 8 disk read I/Os.

The parameter number_of rows is typically determined
upon initialization (formatting) of the storage array, but
allows flexibility to improve read performance or write per-
formance based on the application being used.

Alternating Data/Parity Roles of Disks

In some redundancy calculation schemes, the parity infor-
mation is accessed (and in particular written) much more
frequently than the data. Thus, in some embodiments the
system alternates the roles of disks 28 between stripes, so that
each disk holds data in some stripes, and parity in other
stripes. As a result, performance is balanced among the disks.
In an example embodiment, the role is alternated every X
stripes, as follows:

D1 D2 Dn Dn+l Dn+l
Stripes 1...X d1 d2 dn P Q
Stripes (X +1)...2X d2 d3 P Q d1
Stripes Q d1 dn P

(n+DDX)+1...
(n+2)X

In the above table, physical disks are denoted “D 1. .. “D
n+1” while data blocks are denoted d1 . . . dn. The parameter
X may be determined and fixed, for example, upon initializa-
tion (formatting) of the storage array.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art. Documents
incorporated by reference in the present patent application are
to be considered an integral part of the application except that
to the extent any terms are defined in these incorporated
documents in a manner that conflicts with the definitions
made explicitly or implicitly in the present specification, only
the definitions in the present specification should be consid-
ered.

The invention claimed is:
1. A method for data storage, comprising:
in a system that comprises multiple servers and multiple
storage devices, holding in a server a definition of a
stripe that comprises multiple memory locations on the
storage devices, to be used by the servers for storing
multiple data elements and at least a redundancy ele-
ment calculated over the data elements; and
modifying, by the server, one or more of the data elements
in the stripe by:
executing in the storage devices an atomic command,
which updates the redundancy element to reflect the
modified data elements only if a current redundancy

15

25

30

40

45

55

20

element stored in the storage devices reflects the mul-
tiple data elements prior to modification of the data
elements;

storing the modified data elements in the storage devices
only in response to successful completion of the
atomic command;

when different writers to the stripe are permitted to write
to a same data or redundancy element concurrently,
storing the modified data elements in the storage
devices only in response to successful completion of
the atomic command; and

when the different writers to the stripe are cannot write
to the same data or redundancy element concurrently,
storing the modified data elements in the storage
devices irrespective of the successful completion of
the atomic command.

2. The method according to claim 1, wherein modifying the
data elements comprises caching the modified data elements,
the current redundancy element and the updated redundancy
element in an interim memory, and committing the modified
data elements and the updated redundancy element from the
interim memory to the storage devices only in response to the
successful completion of the atomic command.

3. The method according to claim 2, wherein the interim
memory and the server belong to different failure domains of
the system.

4. The method according to claim 1, wherein the stripe is
accessible to at least one additional server, and wherein modi-
fying the data elements is performed by the server without
communication with the additional server.

5. The method according to claim 1, wherein modifying the
data elements comprises reading current data elements and
the current redundancy element from the storage devices, and
updating the redundancy element based on the current data
elements, the modified data elements and the current redun-
dancy element.

6. The method according to claim 5, wherein modifying the
data elements comprises, in response to failure of the atomic
command, re-reading the current data elements and the cur-
rent redundancy element from the storage devices, re-calcu-
lating the redundancy element and re-attempting to update
the redundancy element using the atomic command.

7. The method according to claim 1, wherein storing the
data elements and the redundancy element comprises storing
respective timestamps with the data elements, and storing
with the redundancy element a list of the timestamps of the
data elements over which the redundancy element was calcu-
lated.

8. The method according to claim 7, and comprising, prior
to modifying the data elements, verifying that the timestamps
of'the data elements prior to the modification match the list of
timestamps stored with the current redundancy element in the
storage devices.

9. A data storage apparatus, comprising:

an interface configured to communicate with multiple stor-

age devices; and

a processor, which is configured to hold a definition of a

stripe that comprises multiple memory locations on the

storage devices to be used for storing multiple data ele-

ments and at least a redundancy element calculated over

the data elements, and to modify one or more of the data

elements in the stripe by:

executing in the storage devices an atomic command,
which updates the redundancy element to reflect the
modified data elements only if a current redundancy

US 9,274,720 B1

21

element stored in the storage devices reflects the mul-
tiple data elements prior to modification of the data
elements;

storing the modified data elements in the storage devices
only in response to successful completion of the
atomic command;

when different writers to the stripe are permitted to write
to a same data or redundancy element concurrently,
storing the modified data elements in the storage
devices only in response to successful completion of
the atomic command; and

when the different writers to the stripe are cannot write
to the same data or redundancy element concurrently,
storing the modified data elements in the storage
devices irrespective of the successful completion of
the atomic command.

10. The apparatus according to claim 9, wherein the pro-
cessor is configured to cache the modified data elements, the
current redundancy element and the updated redundancy ele-
ment in an interim memory, and to commit the modified data
elements and the updated redundancy element from the
interim memory to the storage devices only in response to the
successful completion of the atomic command.

11. The apparatus according to claim 10, wherein the
interim memory and the apparatus belong to different failure
domains.

12. The apparatus according to claim 9, wherein the stripe
is accessible to at least one additional data storage apparatus,
and wherein the processor is configured to modify the data
elements without communication with the additional data
storage apparatus.

13. The apparatus according to claim 9, wherein the pro-
cessor is configured to modity the data elements by reading
current data elements and the current redundancy element
from the storage devices, and updating the redundancy ele-
ment based on the current data elements, the modified data
elements and the current redundancy element.

14. The apparatus according to claim 13, wherein, in
response to failure of the atomic command, the processor is
configured to re-read the current data elements and the cur-
rent redundancy element from the storage devices, to re-
calculate the redundancy element and to re-attempt updating
the redundancy element using the atomic command.

15. The apparatus according to claim 9, wherein the pro-
cessor is configured to store respective timestamps with the
data elements, and to store with the redundancy element a list
of the timestamps of the data elements over which the redun-
dancy element was calculated.

16. The apparatus according to claim 15, wherein, prior to
modifying the data elements, the processor is configured to
verify that the timestamps of the data elements prior to the
modification match the list of timestamps stored with the
current redundancy element in the storage devices.

17. A computing system, comprising:

multiple storage devices; and

multiple servers, wherein at least one of the servers is

configured to hold a definition of a stripe that comprises
multiple memory locations on the storage devices to be
used by the servers for storing multiple data elements
and at least a redundancy element calculated over the
data elements, and to modify one or more of the data
elements in the stripe by:
executing in the storage devices an atomic command,
which updates the redundancy element to reflect the
modified data elements only if a current redundancy

15

40

55

22

element stored in the storage devices reflects the mul-
tiple data elements prior to modification of the data
elements;

storing the modified data elements in the storage devices
only in response to successful completion of the
atomic command;

when different writers to the stripe are permitted to write
to a same data or redundancy element concurrently,
storing the modified data elements in the storage
devices only in response to successful completion of
the atomic command; and

when the different writers to the stripe are cannot write
to the same data or redundancy element concurrently,
storing the modified data elements in the storage
devices irrespective of the successful completion of
the atomic command.

18. The system according to claim 17, wherein the one of
the servers is configured to cache the modified data elements,
the current redundancy element and the updated redundancy
element in an interim memory, and to commit the modified
data elements and the updated redundancy element from the
interim memory to the storage devices only in response to the
successful completion of the atomic command.

19. The system according to claim 17, wherein the stripe is
accessible to at least one additional server, and wherein the
one of the servers is configured to modify the data elements
without communication with the additional server.

20. The system according to claim 17, wherein the one of
the servers is configured to store respective timestamps with
the data elements, and to store with the redundancy element a
list of the timestamps of the data elements over which the
redundancy element was calculated.

21. The apparatus according to claim 20, wherein, prior to
modifying the data elements, the one of the servers is config-
ured to verity that the timestamps of the data elements prior to
the modification match the list of timestamps stored with the
current redundancy element in the storage devices.

22. A method for data storage, comprising:

in a system that comprises multiple servers and multiple

storage devices, holding in a server a definition of a

stripe that comprises multiple memory locations on the

storage devices, to be used by the servers for storing

multiple data elements and at least a redundancy ele-

ment calculated over the data elements; and

modifying, by the server, one or more of the data elements

in the stripe by:

under a lock on at least part of the stripe, updating the
redundancy element in the storage devices to reflect
the modified data elements only if a current redun-
dancy element stored in the storage devices reflects
the multiple data elements prior to modification of the
data elements;

storing the modified data elements in the storage devices
only in response to successful completion of the
updating of the redundancy element;

when different writers to the stripe are permitted to write
to a same data or redundancy element concurrently,
storing the modified data elements in the storage
devices only in response to successful completion of
the atomic command; and

when the different writers to the stripe are cannot write
to the same data or redundancy element concurrently,
storing the modified data elements in the storage
devices irrespective of the successful completion of
the atomic command.

#* #* #* #* #*

